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Abstract

In this paper, we review some recent results concerning the physics of forcing in open flows. First, we recall some

properties of global modes in wakes, showing their shapes and their dependence on the Reynolds number and underline

the importance of the mean flow correction induced by the fluctuations. Second, we show how a local temporal forcing

can affect these properties, always through the modification of the mean flow, until the wake reaches a critical transition

even far from the threshold. At last, we address some conjectures about an extended model suitable for describing the

dynamics of forced wakes.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The wake of a cylinder is one of the most well-known cases of hydrodynamical instability studies in open flows. The

phenomenon is elegant and looks simple: the geometry is basic, can generally be considered as a 2-D case, and it has, in

the supercritical regime, a single well-defined frequency that depends on the Reynolds number. Besides, its main

properties (drag, pressure, global mode characteristics, etc.) have been covered by a large literature (experimental,

numerical and theoretical). In fact, this case is commonly considered as a basic case for the understanding of more

complex situations involving bluff bodies moving in a fluid. As simple as it seems, the cylinder wake, or Bénard–von
Karman instability (BvK) is still one of the greatest interest for the wake community, and periodically feeds knowledges

on fluid mechanics.

In particular, some recent works focused on studying bluff body wakes under forcing conditions. This issue has been

highlighted by the recent increasing of studies on flow control.

By definition, the control of a flow involves an external perturbation (in time or space) which enables the changing of

some of the flow characteristics in order to optimize specific values (such as drag, lift, base pressure, shear layer or

vortex strength), thus naturally providing forced flows. More generally, flows under forcing conditions can be found in

most of the real cases. For instance, once the structure giving rise to instability starts to vibrate itself, it acts like a

temporal forcing which modifies the flow dynamics. Here again, physics of forcing can take place in all the

fluid–structures interactions situations. Many studies have dealt with periodic forcing of wakes and how this forcing

affect properties such as forces, structures, etc. Among these works, one can underline on the one hand, those

conducted by Tokumaru and Dimotakis (1991), Dalton and Xu (2001), Protas and Wesfreid (2002) or Thiria et al.

(2006) in the case of a cylinder performing rotary oscillations, many works on in-line oscillations [see extensive review
e front matter r 2009 Elsevier Ltd. All rights reserved.

uidstructs.2009.04.002

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2009.04.002


ARTICLE IN PRESS
B. Thiria, J.E. Wesfreid / Journal of Fluids and Structures 25 (2009) 654–665 655
by Williamson (2004)], or a combination of both, as discussed by Blackburn et al. (1999). On the other hand, even

though the forcing of a wake affects properties such as forces and structure has been established, it has also been shown

that the stability properties are modified depending on the forcing and that this modification is the result of a mean flow

correction created by the interaction between the forcing and the global instability. This observation has been made

possible through the recent result showing that linear stability theory applied on time-averaged flows can account for

the behaviour of nonlinear systems [see Thiria and Wesfreid (2007), Barkley (2006), Sipp and Lebedev (2007), Mittal

(2008) or Pier (2002)], involving averaged instead of basic flows to extract stability properties of any forced flows. For

some cases, a well chosen forcing can even stabilize the whole wake by cancelling the absolute growth rate of the global

instability. We so obtain, far for equilibrium, the basic state (Thiria and Wesfreid, 2007).

In this paper, we propose to review some of the recent results focusing on the effect of the forcing on wakes. The

geometry chosen to show the effect of the forcing is simple: a two-dimensional bluff body wake (i.e. associated with a

circular or triangular cylinder). We chose to present only the effect of a temporal forcing, here consisting of a sinusoidal

rotation of the body itself around its axis [as in Protas and Wesfreid (2002) and Thiria et al. (2006)]. The choice of

rotary oscillations has been retained because it is one of the standard temporal forcings used in flow control and is the

one chosen by our group, but we assume that the physical mechanisms presented in this work can account for a large

range of periodic forcings.

The present paper is structured as follows: the first part focuses on the characteristics of global modes in simple wake

flow. We recall some of the important observations and theoretical considerations concerning the strong spatial

inhomogeneity of the global modes, how they evolve, and their link with the modification of the mean flow above the

threshold. Then, we show how a simple temporal forcing, always through modification of the mean flow, can modify

the characteristics of the initial global mode until the wake reaches a critical transition even far from the threshold.

Last, we address some conjectures about an extended Landau model suitable for describing the dynamics of forced

wakes.
2. Spatial inhomogeneity of global modes in wake flow

2.1. Mean flow correction

For a critical control parameter, the Reynolds number (Re), the flow behind the cylinder becomes unstable and

undergoes self-sustained oscillations, and the unstable basic state of the wake is modified by an observable mean flow

correction. This modification is described by the nonlinear coupling of perturbations in the Navier–Stokes equation

creating a non-zero stationary component induced by the wake fluctuations. This principle is illustrated in Fig. 1(a) and
Fig. 1. Evolution of the dimensionless recirculation length Lr=d, where d is the typical length of the bluff body, as a function of the

Reynolds number. Due to nonlinear effects (creation of a non-zero stationary component induced by wake fluctuations), Lr breaks up

with its linear dependence in the stable branch and starts to decrease with Re (�). For a given Reynolds number, the morphology of the

mean flow is then drastically far from the unsteady basic flow (E). From Zielinska et al. (1997).
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is taken from Zielinska et al. (1997). In the stable branch (below Rec), the recirculation length, which is a footprint of

the mean flow, grows linearly with Re. At the transition, Lr breaks with its linear (diffusive) dependence (represented by

the dashed line from transition) and starts to decrease nonlinearly. One should note that, beyond the critical point, the

wake is in an non-stationary situation and is averaged in time for comparison with the stable branch in Fig. 1. The

importance of this mean flow correction appears to be crucial in the understanding of wake (forced or not) and will be

discussed later.
2.2. Frequency selection

The BvK instability can be discerned by a global coherence of the oscillation. Experimentally, the relationship

between Strouhal frequency of vortex shedding and the Reynolds number was established long ago by Camichel et al.

(1927) and Bénard (1928), and was more recently studied by Provansal et al. (1987) and Williamson (1988), for instance.

The mechanism of frequency selection of such self-sustained flows is still a challenge; from the theoretical point of view,

it can be based on the analysis of the complex global local absolute frequency o0 which depends on the streamwise

coordinate. For normal modes growing proportionally to e�iðo0t�k0xÞ, where o0 and k0 are, respectively, the complex

absolute frequency and complex absolute wavenumber with zero group velocity, if Imðo0Þ40, the flow is said to be

locally absolutely unstable (AU); the perturbations grow in situ and overrun the whole flow. On the other hand, if

Imðo0Þo0, the flow is considered locally convectively unstable (CU); the perturbations are amplified but advected by

the oncoming flow. It is now well known that flows giving rise to self-sustained (or global) oscillations exhibit a finite

region of absolute instability which is a necessary condition for synchronization. In addition to a global study of the

stability, many different criteria, based on local analysis, have been proposed: Pierrehumbert (1984), Koch (1985),

Huerre and Monkewitz (1990), Chomaz et al. (1991) and others [see Chomaz (2005) for a review]. Even though some

works have already used time-averaged flow with stability theory [see for instance Mattingly and Criminale (1972),

Triantaffylou et al. (1986) or Hammond and Redekopp (1997)], it has finally been found that the first stability analysis

that can account for the observed selected frequency in spatially developed open flows, even far from the onset, is a

linear theory applied on the time-averaged flow, instead of the unperturbed basic flow. Results showing that singularity

have been presented for the first time by Pier (2002) (see Fig. 2). Later, Barkley (2006), Sipp and Lebedev (2007) and
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Fig. 2. Evolution of the global selected frequency in the wake of a circular cylinder as a function of the Reynolds number: &,

frequency obtained by direct numerical simulation (DNS); —, experimental results from Williamson (1988). Results (os), represented

by (E), have been obtained by applying the linear saddle-point criterion xs [see Chomaz et al. (1991)] on the time-averaged mean flow.

The (�) represent the same calculation applied on the unperturbed basic flow. From Pier (2002).
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Mittal (2008) have advanced some theoretical conjectures showing that the mean state corresponds to a marginally

stable situation and that the eigenfrequencies associated with the global modes follow the experimental curve for quite a

large range of Reynolds numbers above the threshold. In addition, Thiria et al. (2008) showed that, even in the transient

regime, the instantaneous selected frequency (and more generally the stability properties), are entirely determined by the

mean state at this instance.

2.3. Global mode envelope

In the mid-nineties, some works have focused on the scaling laws of the spatial shape of the global mode (i.e. envelope

of the peak-to-peak amplitude of fluctuations), previous works on the formation length consisting only in qualitative

discussion about the spatial behaviour. Goujon-Durand et al. (1994), Wesfreid and Zielinska (1995) and then Wesfreid

et al. (1996) have been among the first to point out the spatial inhomogeneity of the selected modes as an extension of

previous works in confined instabilities as the Rayleigh–Bénard convection [see Wesfreid et al. (1978)]. In Fig. 3, we

show the typical structure of the global mode for a given supercritical Reynolds number (here Re ¼ 1:213Rec). As

shown, the distribution of fluctuations is strongly inhomogeneous (non-parallel) and presents two symmetric clear

maxima close to the body. For more clarity, one can have a look to Fig. 3(b) which is taken from Wesfreid and

Zielinska (1995), and displays the global mode shape as the only coordinate x (i.e. for fixed abscissa coordinate y). This

is the classical representation of the envelope of the global mode. It has a sharp front, a maximum amax corresponding

to its spatial position xmax and then diffuses far from the body to the streamwise stable region. The study displayed in

Fig. 3(b) has focused on the evolution of this shape as a function of the Reynolds in the supercritical regime. They

proposed that both amax and xmax follow scaling laws of the following form:

amax ’ ðRe�RecÞ
1=2; xmax ’ ðRe�RecÞ

�1=2, (1)
Fig. 3. (a) Isocontours of the fluctuating velocity modulus for the streamwise fluctuation vx (2-D global mode shape) in the x–y plane.

The flow is from left to right and the bluff body is located at coordinates (x=d ¼ 0, y=d ¼ 0). (b) One-dimensional representation of the

global mode shape (streamwise evolution for a fixed y=d) as a function of the Reynolds number. (c) and (d) Linear dependence of the

square of maximum of the fluctuation a2max and the inverse of the square of the typical lengthscale 1=x2
max showing that global modes

follow scaling laws. (a) From Wesfreid et al. (1996); (b)–(d) from Wesfreid and Zielinska (1995) for a triangular cylinder.
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where Rec is the critical Reynolds number corresponding to the onset of the instability. Those scaling laws have been

confirmed using a simplified Ginzburg–Landau model [see Couairon and Chomaz (1999)]. Sufficiently close to the

threshold, this model, simple though it is, gives a good representation of the dynamics for such nonlinear flows. It is also

important to notice that scaling laws derived from a Landau model do not exist in the whole instability domain and

describe the critical behaviour close to the onset of instability. As inhomogeneities are important in such systems

(due to the relaxation of the shear profile with advection), there is a competition between purely nonlinear

effects and spatial inhomogeneity. Thus, if xmax is located in the region of absolute instability, where nonlinear effects

dominate, a dynamic front takes place as it evolves in an homogeneous medium. xmax can be assimilated to the

correlation length and scales as ðRe�RecÞ
�1=2 as shown in Fig. 3. Besides, and that is the case far from the threshold, if

xmax is outside the region of absolute instability, inhomogeneities prevail, the model used cannot account for the

evolution of the global mode shape [see detailed discussions in Couairon and Chomaz (1999) or Goujon-Durand and

Wesfreid (2005) and same remarks can be made about amax]. Those observations will be discussed again later, in the case

of a forced wake.
3. Dynamics of forced wakes

In the following, the modifications of the general properties observed in free wakes, when they are subjected to

periodical temporal forcing, are discussed. As introduced above, we chose to consider a classical temporal forcing in the

wake that consists of performing rotary oscillations of the cylinder itself, as displayed in Fig. 4. We define a forcing

amplitude A that is the ratio between the maximal azimuthal velocity and the upstream velocity u1 and a forcing

frequency f f . We also introduce the frequency f 0 which corresponds to the natural shedding frequency without forcing.

We present results performed at Re ¼ 150. Most of the time, we chose to focus on one single forcing frequency,

f f ¼ 5f 0, and to study the evolution of the wake as a function of A. This choice has been made in this framework,

because that particular forcing frequency is one where a wide range of changes can be observed with respect to the

forcing amplitude, so that we can get details on the dynamics. Other frequencies have been treated in Thiria et al. (2006)

and Thiria and Wesfreid (2007), and the physical behaviour is similar. Previous works have shown that, even for small

external perturbations, the wake structure was strongly modified. Fig. 5, from Thiria et al. (2006), shows the evolution

of a cylinder wake structure at Re ¼ 150 subjected to rotating oscillations of the body itself as a function of the forcing

amplitude. This dynamic has been observed for different types of temporal forcing [in-line, cross-line oscillations, rotary

oscillations, etc.; see for example Protas and Wesfreid (2002), Willden (2002), Nishihara et al. (2005) or Bergmann et al.

(2005)].

As can be seen in Fig. 5, the forcing vortices are shed at the forcing frequency in the near-wake for a typical lock-in

length depending on the forcing parameters, but merge downstream from both rows to give a new pattern similar to the

one observed in the unforced case. Quantitatively, one of the features of this new dynamic is the strong mean flow

correction created this time by the forcing. This phenomenon is clearly shown in Fig. 6. for the same forcing parameters

as in Fig. 5. The recirculation length (blue region), initially about 2d can be extended to 8� 10d, depending on the

forcing conditions.

Thiria and Wesfreid (2007) showed that vortices corresponding to the lock-in region had no clear dynamics as

Kármán vortices and diffused very quickly in the wake. Besides, the far wake dynamics has been found to be more

complex. After performing a complete local linear stability analysis using the Rayleigh equation solved numerically,
Fig. 4. Description of the oscillating motion.
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Fig. 5. Effect of the forcing on the wake structure (here the frequency is fixed and the amplitude A varies). The forcing frequency is

f f =f 0 ¼ 5, the forcing amplitude is (a) A ¼ 1, (b) A ¼ 2, (c) A ¼ 4, (d) A ¼ 5, (e) A ¼ 7 and (f) A ¼ 9.
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based on the averaged forced flows obtained experimentally, they found that the far-wake dynamics under

forcing conditions was a new global mode selected by the system: the frequency, but also the absolute growth rate (and

so its spatial shape), are different from those selected in free case, due to the modifications of the mean

properties that change the intensity and the length of the absolute region. The distribution of local absolute

pulsation and absolute growth rate as well as the critical transition between absolute and convective zone are

drastically different and are determined by the forcing parameters. Moreover, for some parameters, the forcing

is able to completely avoid the global instability (as can be seen on the left inlet of Fig. 7) to give a globally

stable flow. By applying this stability analysis to a sufficient number of forcing cases, they have been able to

draw the first stability diagram for the forced wake. This result, from Thiria and Wesfreid (2007), is displayed

in Fig. 7. The thick lines, in the A versus f f =f 0 plane, correspond to the critical limits where transition from global

instability to global stability occurs. Those critical lines of course depend on the nature of the forcing and the body, and

diagrams for in-line oscillation or a square-cylinder wake should not be the same. However, we assume once again that

the physics of these phenomena remain the same [some recent studies performed on a partially masked cylinder, as

suggested in Bergmann et al. (2006), have already given some confirmation to this conjecture (Godoy-Diana et al.,

2008)].
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Fig. 6. Time-averaged flows obtained by PIV for different forcing amplitude at forcing frequency f f =f 0 ¼ 5, showing the strong

modification induced by cylinder oscillations. The blue zone on the top left of the cylinder corresponds to the shadow of the laser sheet

and has no physical meaning.
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Fig. 7. Predicted global stability properties of forced wakes in the A2f f =f 0 plane. The symbols (�) denote a globally stable flow, while

the symbols (%) denote a globally unstable flow. The lozenges (B) indicate the transition between these two states, corresponding to a

critical value of the forcing amplitude Ac, for each forcing frequency. The two insets correspond to the spatial evolution of the absolute

growth rate for two characteristic cases (globally unstable and globally stable): f f =f 0 ¼ 4; A ¼ 2 (right) and f f =f 0 ¼ 4; A ¼ 4 (left).

As can be seen, the absolute region disappears by crossing the critical line, giving a globally stable flow.
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3.1. Forced global modes

As we have seen that a transition from a globally unstable to a globally unstable flow can occur even far from the

threshold through the action of the forcing, we performed, in another work (Thiria et al., 2009), a detailed study

following the evolution of those selected modes from the free case to the critical line shown in Fig. 7. This study has

been made using a numerical simulation with spectral methods [the same as used in Wesfreid and Zielinska (1995)] for

the same parameters as Thiria et al. (2006) and Thiria and Wesfreid (2007), with the forcing frequency still set to 5f 0.

Fig. 8 shows the evolution of the global mode shape as a function of the forcing amplitude A. As can be seen, the

global instability (characterized by its front and amplitude) is pushed back downstream as we approach the critical line

displayed in Fig. 7. The last global mode to be displayed corresponds to a forcing amplitude A ¼ 3:85. For greater

amplitudes, the position of the front and amplitude were outside of our field, but we assume that they exist until the

global stabilization of the wake for A�5. This first observation recalls what we have seen for free wakes and which is

displayed in Fig. 3(b). Fig. 8(b) shows the corresponding selected global frequency as a function of A. As already

noticed in Thiria and Wesfreid (2007), the Strouhal number St ¼ u1f =d decreases from the natural selected frequency

St ¼ 0:185 without forcing to St ¼ 0:115 as the wake stabilizes. One important remark is that the last selected
(a) (b)

(c) (d)

Fig. 8. (a) Evolution of the global mode shape as a function of the forcing amplitude. Measurements have been taken at the same

crosswise coordinate y=d as Fig. 3 along the streamwise direction. As can be seen, global instability is pushed back downstream until a

global stabilization of the wake. (b) Corresponding selected Strouhal number (St ¼ u1f =d) as a function of A. The global frequency

decreases from St0 ¼ 0:185, which corresponds to the natural global frequency, to St ¼ 0:115, which is close to the linear global

frequency selected by the basic flow. (c) and (d) Linear dependence of the square of maximum of the fluctuation a2max and the inverse of

the square of the typical lengthscale 1=x2
max as a function of St, showing that forced global modes also follow scaling laws close to the

critical lines of Fig. 7. From Thiria et al. (2009).
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frequency, which can be defined as a threshold frequency (say St0 ¼ 0.115) is very close to the frequency linearly

selected on the basic flow (see Fig. 2). Moreover, one can note that the first frequency is numerically observed while the

second is a theoretical prediction based on the saddle-point criterion, strengthening the fact that both values are nearly

the same. As to knowing whether forced global modes have scaling laws too, we then have to choose a control

parameter. If forced wakes follow a Landau model, we should expect that the global frequency evolves, as for nonlinear

oscillators, as the square of the amplitude of the perturbation. Figs. 8(c) and (d) display the evolution of a2max and

1=x2
max with the corresponding selected Strouhal number. We indeed observe that both quantities scale like St, which

means that they follow scaling laws of the form: amax�ðSt� St0Þ
1=2 and xmax�ðSt� St0Þ

�1=2. As discussed in the

previous section, when the case considered is far from the critical line, strong inhomogeneities in the wake should

prevail upon nonlinear effects, changing the evolution of these critical parameters. However, scaling laws exist for a

quite large domain from the transition AU/CU. Even far from the onset of instability (Re ¼ 15043Rec), this thus

shows that a single temporal forcing can lead to classical critical behaviour.
4. Discussion and conclusion

We have showed that an external forcing can modify the intrinsic dynamics of the wake by selecting a new global

mode. This happens through the modification of the mean flow that contains stability properties as has recently been

shown. Depending on the forcing parameters, a transition from a global unstable to a global stable flow can occur.

Coming up to this threshold, we have seen that the forced global modes followed critical behaviours as other

instabilities described by nonlinear simplified models. Finally, it appears that the selection of a global mode for flow

under forcing conditions is of the same kind as those selected in the natural case. For greater clarity, this principle is

illustrated in Fig. 9. The length of the reverse-flow region Lr, which is the footprint of the mean state, is plotted as a

function of the Reynolds number. In the classic case of the flow behind an obstacle, which can be followed from left to

right in Fig. 9, Lr grows linearly with Re in the stable region, located on the left of Rec. When Re4Rec, the flow

becomes unstable, Lr decreases as a consequence of the mean flow modification, and a global mode is selected. Its

frequency is then linearly determined by its mean state and its spatial properties are dictated by the scaling laws given in

the previous section. Under forcing conditions, the mean flow is corrected, the new state selects a new mode and the

bifurcation then can be seen from up to down. The different forced states with global instability (or no-lock-on state)

are distributed on a vertical line (for Re4Rec). Recently, we have shown that the same relation between the selected

global frequency and wake recirculation region under blockage condition were closely linked, involving that the
Re

Lr

Rec

xmax

LR

Fig. 9. Schematic view of the possible bifurcations that can occur for a cylinder under temporal forcing conditions. The vertical line,

for Re4Rec, is explored when the forcing A goes from 0 (lower branch) to the critical value given by the critical line given in Fig. 7

when the wake reaches its basic state. From Thiria and Wesfreid (2007).
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dynamics such as described above could account for a wide range of forcing [see Patil and Tiwari (2008); same

behaviours can be observed in the wake visualizations of a cylinder controlled by a ‘‘slip’’ splitter-plate obtained by

Mittal (2003)].

Amplitude equations such as the Ginzburg–Landau1 or Stuart–Landau models which give a good description of the

wake dynamics near the threshold could be extended to forced wakes by taking into account the mean flow correction

induced by the forcing. Corrections towards those models had already been studied in other physical situations,

such as the Rayleigh–Bénard instability [see Siggia and Zippelius (1981) and Zippelius and Siggia (1983); a coupled term

in the Ginzburg–Landau equation is introduced to account for an additional stationary mode]. Thus, in order to

integrate the modification of the global dynamic due to this forcing, a system of coupled equations can be written as

follows:

t0
da

dt
¼ �ð1þ ic0Þa� gð1þ ic1Þjaj

2aþ gð1þ ibÞab;

t1
db

dt
¼ �sbþ F ðA; f f Þ;

8>><
>>:

(2)

where a is here the complex amplitude of the perturbation and c0, c1, g, g, b, s, t0 and t1 are real coefficients. The

equation for b is that of the quadratic mean flow correction generated by the forcing, here depending on the forcing

parameters. This equation is coupled to those used for the free wake [see for instance Provansal et al. (1987)]:

a new term ðbr þ ibiÞab appears, modifying the linear growth rate. Such a system could, a priori, account for

the wake dynamics of a cylinder performing rotary oscillation, which is consistent with our experimental results, and

more generally for many forced open flows. For instance, this approach is close to those adopted by Schumm

et al. (1994) who studied the validity of the Stuart–Landau model in the transient regime between controlled

and non-controlled wakes (once the control is turned off). Their study did not include an extra term corresponding to

the forcing, suggesting that the total global dynamics is contained in a single equation whether or not the flow

is forced.

However, we believe that the presence of this extra term is important to describe the mechanisms that are involved in

the dynamics of forcing. If a simple Stuart–Landau model is sufficient, all the states located on the critical line of Fig. 7

should then be well described by a linear equation, that is da=dt ¼ �ð1þ ic0Þa. On the one hand, this relation should fail

to give the right frequency at the transition; the above relation shows that Stc increases with Re, which is not the case

according to Pier (2002) or Barkley (2006). On the other hand, far from the classical threshold (for instance Re ¼

15043Rec in our case), the recirculation length of the basic state is about 4 times the one observed for Rec, making

these two flows drastically different, and we do not know, at the moment, if both dynamics (from Rec to Re ¼ 150 with

no forcing, and from Re ¼ 150 with forcing to Re ¼ 150 with no forcing, see Fig. 9) are exactly the same. In contrast, the

introduction of the new term in ab should be able to fill some of these lacunae. For instance, as b is maximum on the

critical line (maximum of the mean flow correction due to the forcing that leads to the GU/GS transition), the linear

regime then would become da=dt ¼ �ð1þ ic0Þaþ gð1þ ibÞab and would allow to retrieve the correct dynamics at the

onset. Similar arguments can be put forward in the nonlinear regime and we are now working on experiments that could

precisely detail the validity of this model, especially by analysing the behaviour of jaj2 (determination of the Landau

constant) as a function of the Reynolds number and the forcing parameters. This study confirms that controlled, and

more generally forced wakes, do have nonlinear critical behaviour, whatever the nature of the control.
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